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We study a stochastic forest fire model introduced by P. Bak et al. as a model 
showing self-organized criticality. This model involves a growt h parameter p, 
and the criticality is supposed to show up in the limit p ---, 0. By simulating the 
model on much larger lattices, and with much smaller values of p, we find 
that the correlations with longest range do not show a nontrivial critical 
phenomenon in this limit, though we cannot rule out percolation-like critical 
behavior on a smaller but still divergent length scale. In contrast, the model 
shows nontrivial deterministic evolution over time scales ,> 1/p in the limit p ~ 0. 

KEY W O R D S :  Critical phenomena; self-organized criticality; epidemics; 
forest fires; percolation. 

1. I N T R O D U C T I O N  

In a series of recent papers Bak et al. (1 3) have introduced the concept of 
"self-organized criticality" (SOC). In most conventional critical phenomena 
(such as the critical point in a gas liquid transition, or a magnet at the 
Curie temperature), one has to fine tune a control parameter (the tem- 
perature in the above examples), in order to arrive at the critical point. 
Thus, if the control parameter is set at random, the system will not be 
critical with probability one. 

In view of this, it seems hard to understand the ubiquity of 1I f  noise 
(or, more correctly, of 1/ f  ~ noise, ~ ~ 1). (4) It might be that 1/ f  noise is 
simply not a critical phenomenon, and the observed power law is only 
appearent. A number of alternative explanations have indeed been 
proposed. (5~ The other reason, advocated by Bak etal . ,  might be that 
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systems are driven into a critical state without explicit finetuning. In this 
case, it would not be the experimenter, so to say, but the evolution itself 
which fine tunes the control parameter. 

This concept is not so new indeed. There exist a number of growth 
models which lead to anomalous scaling laws without having fine-tuned 
parameters, for instance, diffusion-limited aggregation or Richardson-Eden 
growth. ~6~ Closer to SOC is the well-known model of invasion percola- 
tion. ~7) In this model, each bond i (we discuss only the bond version; there 
exists also a completely analogous site version) is attributed a random 
number ri ~ [0, 1 ] drawn from some continuous distribution. Starting from 
a "cluster" consisting of a single randomly chosen site, an infinite cluster is 
then built by adding in each time step the site reached by the perimeter 
bond with the smallest ri. Here, we call a bond a "perimeter bond" if it 
connects a site in the cluster with a site not in the cluster. In the long-time 
limit, the cluster will have the statistics of an infinite percolation cluster at 
threshold. 

Most models discussed in refs. 1-3 are indeed similar to invasion 
percolation, though they seem not to be in the same universality class. 
The only model studied by Bak etal. which seems unrelated to it 
(although, as we shall see, there is a different connection with percolation) 
is the forest fire" (FF) model studied in ref. 3. It is the purpose of this paper 
to show that this model does not indeed show SOC, but that it shows very 
interesting behavior nevertheless. 

In the FF model, each site of a lattice can be in one of three states, 
It can be occupied by a tree susceptible to be burned (T), by a burning tree 
(B), or by ashes (A). Each tree can burn only during 1 time step, after 
which it turns into ash, B ~ A. During this time step, it will put all trees 
in neighboring sites to fire, B T ~  AB. These transitions both happen with 
probability 1. Finally, new trees can grow from the ash, A ~ T, with small 
probability p < 1. 

The model is rather unrealistic in assuming that fire is never reignited 
but can only propagate through the forest. A sustained fire can exist only 
if new trees are growing in sufficient amounts while the fire is still burning. 
In this respect, the model would be more applicable to the spreading of 
some parasite rather than a forest fire. The feature which distinguishes it 
from the parasite-in-an-orchard model of Hammersley ~8"9~ (which leads 
exactly to standard percolation) is the birth of new trees. If p is finite, the 
model is indeed in the universality class of the epidemic model with 
recovery, ~1~ which is isomorphic to directed percolation. ~H~ 

New and interesting features arise if one takes the limit p --+ 0. In order 
to have nontrivial dynamics, one has to consider the model on time scales 
of order l/p, i.e., one has to rescale time. One also has to rescale distances, 
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as the average density of fires in a stationary state will be oc lip. It was 
conjectured in ref. 3 that exactly in this limit the model shows SOC. 

These claims were supported in ref. 3 by simulations on square lattices 
of sizes up to 100 x 100, and with p >~ 0.01. As noted in ref. 3, on lattices of 
this size the fire is extinguished after some finite time for smaller p, if one 
starts with statistically uniform distributions of fires and trees. Using non- 
uniform starting distributions, we were able to simulate the model for p 
down to 10 -4. We did this on lattices of sizes up to 4800 x 4800, and for 
times up to 8 x 10 4. Runs of comparable size were also made on 3- to 
6-dimensional lattices. 

We find no indication of a nontrivial critical behavior. Notice that the 
model is critical in a trivial sense: since the average density of fires scales 
as p, and since the spreading of fires via nearest neighbor contacts implies 
nonzero correlation, there must be a diverging length scale. What  we claim 
is that the correlations on this length are trivial (for < 6  dimensions), in 
being essentially the same as arising from straight fire fronts distances ~ lip 
apart. Also, the motion of these fronts i s - -on  the dominant length scale of 
the correla t ions--not  governed by stochastic fluctuations, but is essentially 
deterministic. We cannot rule out that on a subdominant length scale 
(~ ~ l/p) there is percolation-like critical behavior, though we find no 
positive indication for it either. 

2. S I M U L A T I O N S  A N D  M E A N  FIELD A P P R O X I M A T I O N S  

2.1. T w o  Dimensions 

Starting with an inhomogeneous distribution of fires, two-dimensional 
simulations typically give spiral-like patterns as shown in Figs. 1 and 2. In 
Fig. 1, the distribution of trees is shown on a lattice of size 1024 x 1024, 
with p = 0.0013. The distribution of fires on a lattice of size 400 x 400 with 
p =0.0084 is shown in Fig. 2a, while a lattice of size 4800 x4800 and 
p = 0.0007 is shown in Fig. 2b. From these f igures--and from many more 
similar ones--we see that in 2 dimensions, the fire propagates along rather 
regular fronts whose fluctuations decrease with decreasing p. This is of 
course only true if we rescale the distribution with a factor ocp, as was 
done in Fig. 2. Otherwise said, we find that the unscaled thickness of the 
front increases with 111) less fast than the distance between the fronts 
(remember that the average number of fires in a statistically stationary 
state scales ocp, for p ~ 0). Thus, we should expect that the characteristic 
length scale between regular fronts scales oc l/p, as indeed observed in 
Fig. 2. We thus verify the finding of ref. 3 that the distribution of fires has 
fractal dimension / ) r =  1 on length scales ~ ~> 111), albeit in a trivial sense: 
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in the limit p ~ 0, the fires occur densely along smooth lines, What happens 
on much smaller length scales (i.e., within the thickness of one front) is 
discussed later. 

We should mention that the above observations refer to large but of 
course finite times: T,,~ lip to lO/p. We have some indications that on even 
larger time scales the fronts may become fuzzier, e.g., by breaking up on 
small scales and creating pairs of small spirals which can then grow dif- 
fusively. But this is very slow dynamics (much slower than the rotational 
motion of the spirals), and we have been unable to study it systematically. 
Long-time runs up to 80,000 time steps were performed in two dimensions 
(10242 lattice with p=0.00135 and 20482 lattice with p = 5 x  10 -4) for 

Fig. 1. Distribution of trees on a lattice of size 1024 x 1024, with p=0.0013, after 104 
iterations. Trees are white, ashes are black. Boundary conditions are periodic horizontally, 
open vertically. 
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Fig. 2. Distribution of fires on two different lattices: (a) size 400 x 400, p = 0.0084, after 2112 
time steps; (b) size 4800 x 4800, p = 0.0007, after 26,592 time steps. 

spiral patterns, but neither the correlation dimension nor the short-time 
average number of fires showed significant time dependence. 

The speed of propagation of a front is not fixed, for any fixed p. 
Assume that p is small, and that a series of sharp fronts parallel to the 
y axis propagate with velocities v~(t). Their positions are x~(t). The density 
of trees is then only a function of x and t, p = p(x,  t), with discontinuities 
at xk(t) .  The density of unburnt trees surviving the kth front is 
p ~  = p(xk - e), and the density just ahead of the kth front is p + = p(x~< + ~) 
(see Fig. 3). In between, the density satisfies 

f i = ( 1 - p ) p  (2.1) 
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1 

,P 

I 
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Fig. 3. 
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Schematic density distribution in a sequence of straight flame fronts�9 
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Neglecting correlations between the trees (i.e., making a kind of mean field 
assumption--a different mean field theory will be discussed in Section 2.1 ), 
it is obvious that vk is a smoothly and monotonically increasing function 
v(p~)  of pk +, while p [  is a smoothly and monotonically decreasing 
function p (p[) .  These two properties together with Eq. (2.1) are enough 
to show that any distribution of fronts will relax, on a lattice with periodic 
boundary conditions, toward a distribution of equidistant fronts moving 
with a common speed. This speed depends on the initial configuration 
through the average distance between the fronts, as this determines the 
time during which the density has grown since the last front had passed. 

We simulated this on a computer for the case of only one front, i.e., 
the distance between adjacent fronts is the lattice length L. Boundary con- 
ditions are periodic. Elementary considerations lead then to the following 
relations between the density of trees p-+ before (resp. behind) the front, 
the average density of fires f, and the velocity of the front: 

fL 
z i p = p +  - p -  _ 

l) 

1 - p -  p L  
l n - -  

1 - p +  v 

(2.2) 

If v and p are functions of p + only, then we see that they depend on the 
product pL  only, but not on p and L individually. In the limit pL ~ O, we 
expect that v/pL ~ oo and that p + and p - tend to a common value &. It 
follows then that f /p  ~ 1 - p,.. 

In our simulations, we measured v, f,  and p -+ for L ~< 4800 and for 
p/> 1 x 10-4. We verified that v and f L  depended on the product pL only. 
We did not exactly find focp ,  mainly since Ap is not yet small enough to 
justify the approximation l n ] - ( 1 - p - ) / ( 1 - p + ) ]  oczip (p was very close 
to 0 in all simulations). We verified, however, Eq. (2.2), and got by 
extrapolation Po = 0.60_+ 0.01. In Fig. 4 we plot log v vs. log p. We do not 
find as nice a scaling law as we would have hoped, but for p L <  1 a 
reasonable fit is given by 

v oc (pL) ~176 (2.3) 

This suggests very much that we are observing (site) percolation, with the 
fires percolating in an essentially static distribution of trees with density 
p+. We should thus compare Pc with the threshold for site percolation, 
which is at 0.5928. (12) The difference zip would then correspond to the 
density of sites belonging to the infinite cluster, and would scale as 
( p + - p o ) <  Equation (2.3) should then be compared to the relation 
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Speed of flame fronts v versus growth probability p . L  between fronts on a log-log 
scale. L is both the lattice size and the distance between fronts. 

v ~ ( p + - p y ' - ~ A p  (~'-~/'~ with ( v ~ - v ) / ~ = O . 1 7 5 x 3 6 / 5 = l . 2 6 .  (9) 

Together with Eq. (2.2), this gives for fixed L, 

in agreement with Eq. (2.3). Assuming pc=0.5928 as in percolation, we 
also found p+ -p~. ~ pZ5 (with rather big uncertainty), in agreement with 
the prediction p + - Pc ~ P("' ~ + ~t-~ ,,~ p3.2 from percolation. Finally, the 
correlation length s within the fire front should be 

(2.4) 

The requirement that ~ L  thus puts a lower limit on 
p:  p L  >> L -(v' ~+~l/v = L-O.235. Below this limit, our picture of regularly 
propagating straight fronts has to break down. 

Actually, the picture breaks down already for larger p, if we consider 
very long times. Straight fronts as discussed above are unstable against the 
formation of "plumes" superficially similar to the plumes rising from a 
boundary layer heated from below. The mechanism is of course very dif- 
ferent in both cases. In the present case, an occasional extinction of fires in 
part of the front (which always happens for small p due to statistical fluc- 
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tuations) leads to a region with high tree density which is then burnt from 
behind. After the front has passed, the region is left excessively depleted, 

and when the next front arrives the fire will again be extinguished in the 
same region, thus giving rise to a positive feedback. For an example of a 
fully developed "plume" see Fig. 5. This mechanism ultimately destroys the 
regular front, and temporarily gives rise to a pair of vortices. But these will 
ultimately also be destroyed by the formation of new plumes, and we 
finally get patterns similar to those seen in Figs. 1 and 2. Thus, the long- 
time behavior is not that of a straight front, and the above discussion 
cannot be used to argue that percolation is relevant in the double limit 
Tp --* oo, p ~ O. In particular, it is impossible to maintain the system close 
to the critical point by keeping the distances between fronts so small that 
they proceed just marginally. This problem will be taken up again in 
Section 3. 

Let us now come back to the more general situation shown in Figs. 1 
and 2. With hindsight we see plumes also in Fig. 1, and we observed indeed 
that the patterns of vortices were occasionally changed by the creation of 
new pairs. Apart from this, we might suspect that the speed of the front is 
zero in the centers of the spirals. In that case, the density p would just be 
critical at these centers, and the large fluctuations there could organize the 
whole evolution. In this sense, the state could then still be called SOC. We 
claim that this is not true. Indeed, more careful investigation shows that 
the endpoints of the flame fronts at the centers of spirals are not fixed. 

Fig. 5. Flame front in a lattice of size 4800 x 4800 with a single front moving downward; 
boundary conditions are periodic, p = 10 4, and t= 17,000. On the left side, a "plume" is 
visible. After it is burnt, it will not immediately burn when the next front comes (since not 
enough trees will have grown yet), and a plume will form again. 
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Instead, for very small p they move as seen in Fig. 6: at any time, the 
density p is discontinuous along a line in the center of a spiral, and the 
endpoint of the flame front moves back and forth along this line./~3~ Similar 
lines of discontinuity in the tree density which are encircled by endpoints 
of flame fronts arise from collisions of fronts. 

If the above picture stays correct in the limit T . p  ~> 1, then the statisti- 
cally stationary state in 2 dimensions is critical only in a very trivial sense. 
Indeed, it is essentially governed by the three deterministic equations 
dp/dt  = (1 - p)  p, v~(t) = v ( p ~ ( t ) ) ,  and p ~ ( t )  = p - ( p ~ ( t ) ) ,  with very little 
stochastic noise. It is not clear whether these equations alone would give a 
chaotic evolution, i.e., whether they show sensitive dependence on initial 
conditions. But we have already seen that flame fronts are unstable for very 
small p. When the deterministic equations are augmented by a finite 
amount of noise, they should give rise to the formation of plumes and thus 
to chaotic evolution. In this scenario, the majority of flame fronts would 
not move under critical conditions, since in general it takes too long for a 

..r--. ~ C 

l g: .;, ,y: .:: .... % /  

' (  } i~ ' #:'.i~ 

t / / , , z . ' ;  <. . , i~  , x ~ ' ~  

Fig. 6. Fires on part  of a lattice (total size 4800x4800)  at three times t, t + r ,  t + 2 r  
separated by r ~ 1/2 of a revolution period (p = 0.00025, t = 59,136, 1: = 852). The fire front 
corresponding to time t is indicated by a hatched background.  The edge of the fire front in 
the center of the spiral does not  stand still, but  moves back and forth along the dashed line, 
which for all times is a line of discontinuity of the tree density. 
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flame front to move into a region with critical density of trees, and the 
density would already be supercritical when the flames reach the region. 

In an alternative scenario, the fronts could become more and more 
fuzzy in the limit T.p--+ oc. In this case, p has to tend toward the critical 
density of percolation. The typical correlation length { would then be the 
one characteristic for percolation at density IP - Pc], instead of ~ oc 1/1) as 
in the above scenario. We shall discuss this scenario in more detail in 
Section 3. 

2.2. Higher Dimensions 

In more than 2 dimensions, similar detailed visualizations are not 
possible. But the higher number of neighbors suggests that we attempt a 
straightforward mean field approximation which should be valid at high 
enough dimensions. As before, we denote by p the density of trees, and by 
f we denote the density of fires. The coordination number of the lattice is 
denoted by N. Then the mean field equations are 

jr= _ f +  (N--  1) pf 
(2.5) 

~ = ( 1 - p )  p - ( N - 1 ) p f  

This allows for a fixed point at 

1 N - 2  
p *  - f *  = N - I '  N - 1  p 

A linear stability analysis shows that this fixed point is a stable focus, with 
eigenvalues 

2+ --~ - ( N -  1) p/2+_ i [ ( N -  2) p]1/2 (2.6) 

Thus, if one starts not exactly at the fixed point, one will observe weakly 
damped oscillations with angular frequency 

o~* = [ ( N -  2) p]l/2 (2.7) 

For finite p, there will be stochastic fluctuations superimposed on these 
regular oscillations. They might even compensate the damping, thus 
leading to sustained nearly regular oscillations with angular frequency 
"~ ( o * .  

We tried to reproduce these mean field solutions in numerical simu- 
lations. We started with either inhomogeneous or homogeneous initial 
conditions. In the latter case, the fires and trees were put randomly, with 
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densities f *  and p*. While the spirals created by inhomogeneous initial 
conditions had stabilized the system in 2 dimensions, this was true to a 
much smaller degree in higher dimensions. Here we always had the 
problem that the system has the tendency to make oscillations large 
enough so that the fires are completely extinguished. Nevertheless, for not 
too small p and for sufficiently large lattices, we did find configurations 
which were stable over sufficiently long times. 

In Fig. 7 we show a typical time series obtained from a simulation in 
D = 4. We see very marked oscillations which are damped at first, but 
which settle then at a more or less constant amplitude. Similar behavior 
was found in D = 3, 5, and 6. The periods were not very dependent on the 
amplitudes, From Fig. 8, where the small-amplitude periods are plotted 
against D, we see that the values expected from Eq. (2.7) are reached very 
slowly. In general, the frequencies were decreasing faster than x/P- For 
D- -3 ,  our results were indeed closer to co oc p than to co oc , ~ .  

A limited visualization of a configuration is possible in D = 3 by 
making either projections of the distribution of fires or by making cuts 
through the distribution of trees. While the former suggested rather diffuse 
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Fig. 7. N u m b e r  o f  fires as a func t ion  of  t ime Jn a 4D lat t ice  of size 803 x 96, wi th  p = 0.00085. 
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Fig. 8. Frequencies of oscillation versus dimensionality. In order to compare with Eq. (2.7), 
the quantity actually plotted is ~oE(2D-2)p] -1/2. Data for different values of p are super- 
imposed: 0.001 ( + ) ,  0.002 (A), 0.00085 (x), 0.0012 (�9 

distributions, the latter indicated clearly (see Fig. 9) that fires propagate 
also here along regular fronts. These fronts are of course 2 dimensional, in 
contrast to the situation in D = 2. This suggests that also in D = 3 we find 
no critical behavior, at least on feasible time and length scales. 

We checked this by estimating the fractal dimensions D r of the fire 
distribution, estimated from the correlation integrals C(r) (i.e., the number 
of pairs of fires with a distance <r) .  For fractal distributions, we expect 

Fig. 9. Two typical cross sections through 3D lattices (L = 256, p = 0.001). Trees are white, 
ashes are black. Times are (a) 4000 and (b) 6000 after a homogeneous random start. 
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C(r),,~ r Dj in a range 1 ~ r ~ p-~/D (remember that the density of fires is 
~p) .  We found this reasonably well obeyed for D = 2  and 3, with 
Df = D -  1. We definitely can rule out the value Df = 2.5 found on much 
smaller lattices (and with much larger p) in ref. 3. For higher D, no scaling 
was reached within the expected range of distances. 

3. POSSIBLE RELATION TO PERCOLATION 

Since flame (hyper-)fronts should become more and more fuzzy in 
higher dimensions, it is more likely than in D = 2 that the true asymptotic 
behavior is percolation-like. More precisely, since we are for any finite p 
not precisely at the critical point, we could expect that we find percolation- 
like behavior for times and distances less than characteristic values T, 4. 
Within this region, the growth of new trees could be neglected, and the 
spreading of fires would be as in an epidemic process without recovery (or 
"dynamical percolation"(9)). The above mean-field theory would be 
qualitatively correct for D > 6. 

Let us first derive Dy for percolation. In the terminology of refs. 9 and 
14, it is the fractal dimension of the "growth sites" and is obtained as 
follows. Consider a cluster of infected (burnt) sites of radius r which all 
come from a common ancestor, which started the cluster a time t ~ r . . . .  
ago. This cluster will contain N( t )~r  ~j sites, where d f = D - f l / v  is its 
fractal dimension. Since each site burns only for 1 time step, the number of 
growth sites is equal to n(t)= dN(t)/dt~ r• v,/u. From this we see that 

fl+ vt 
Df = D -- - -  (epidemic process) (3.1) 

v 

For D = 2, 3, and 4, this gives (9'14) Dj.= 0.764, 1.13, and 1.42, respectively. 
For D >~ 6, we find Df = 2. 

The fact that we found much larger fractal dimensions of fires gives a 
first argument that the critical behavior is not that of percolation. 

Let us now estimate the ranges T and ~. Naively we would guess that 
the characteristic time scale for the process is T =  lip. If we are close to 
percolation, the corresponding length scale is then ~. = T v/~'..~ p-V/v,, and 
the fluctuations of p on length scales ~ should be Ap ~ ~/v. But in this case, 
spreading would be locally isotropic (i.e., not perpendicular to smooth 
fronts). An upper limit for r would then be set by the average distance 
between fires, which is ~p-1/1). Since v/vt> lID for all D>~2, this is in 
conflict with the estimate ~ ~ p-~/v'. 

Unfortunately, this argument against percolation is fallacious since the 
naive estimate T ~  lip is wrong. T is not set by the time during which p 
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changes by a finite amount, but by times during which enough trees in a 
burnt region are newly grown to reach a critical density again: T ~  Ap/p. 
Close to the percolation threshold, Ap ~ 0 .  If we assume percolative 
behavior on all length scales, then we expect by arguments similar to those 
in Section 2.1 that 

3 p  ~ ~ ~/~ (3.2) 

and we get a self-consistency relation 

(U ~ ,,~ p-V/(v,+p~ (3.3) 

For all 2 ~< D < 6, this is still in conflict with ~ ~< p -  I/D, thus ruling out the 
scenario where percolation-like behavior dominates on all length scales. 

If, on the other hand, we assume that fires propagate along fronts with 
distances of order L > ~ between each other, then we have two alternating 
scenarios, none of which we can at present favor: 

(i) pL ~ 0 for p ~ 0. In this case, ~ diverges according to Eq. (2.4), 
and fronts progress like critical percolation processes. Notice that in this 
case there are 2 independent diverging length scales. 

(ii) pL--* const r  Now the average thickness of the fronts stays 
finite, and the model is not critical at all. 

Both scenarios would explain why percolative behavior has not been 
observed in our simulations. 

4. C O N C L U S I O N S  

We have presented numerical results for a forest fire model - -  or, more 
realistically, a model for the spreading of an epidemic with very slow 
recovery. According to the claims of ref. 3, this model should display self- 
organized criticality. Our results suggest that this is not true. On all time 
and length scales feasible in our simulations (which are larger by orders of 
magnitude than those of ref. 3), the model showed no nontrivial critical 
behavior at all. In particular, in 2 dimensions flame fronts are surprisingly 
smooth (giving thus a fractal dimension Df = 1 for the distribution of fires), 
and their motion is not fluctuation-dominated over distances comparable 
to the correlation length. Instead, one finds essentially deterministic 
propagation of the flame fronts on this length scale. Superimposed on it is 
stochastic noise whose amplitude seems to vanish in the relevant limit of 



Self-Organized Criticality 699 

vanishing growth rate p for new trees. The resulting motion is extremely 
complicated and not yet fully understood. 

In 3 dimensions, the correlation dimension of the fires is 
D s = 2.0 + 0.2, different from the value found 2.5 found in ref. 3. We argued 
that if there were essential finite-time or finite-size corrections, then the 
correct value of D I should be even lower. 

In ref. 3, the agreement of D s with a supposed value of the fractal 
dimension of eddies in fully developed turbulence has led the authors to 
speculate on a possible relationship between the present model in the limit 
p -~ 0 and hydrodynamic turbulence. We see no such connection. While the 
dynamics in 2 and 3 dimensions is characterized by nearly deterministic 
evolution of macroscopic fronts, in higher dimensions we approach a 
mean-field behavior governed by rate equations allowing for (nearly) 
periodic oscillations around a fixed point. For D ~> 6, this fixed point is just 
the mean-field behavior of percolation. 

I f  the true asymptotic behavior is critical (contrary to what is 
suggested by our simulations), then it should be in the same universality 
class as percolation also for D < 6. More precisely, it should then coincide 
on time scales T ~  lip and on length scales < T ~ v with "dynamical" per- 
colation in the sense of ref. 9, or with the "epidemic process with removal." 
If this is true, we expect critical behavior to set in only very late (in time, 
in p, and on very large lattices), and we would expect the critical correla- 
tion length not to be the dominant diverging length scale. This would 
explain why it is de facto unobservable. 
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